112 research outputs found

    CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    Get PDF
    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030

    High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Get PDF
    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry

    Improving accuracy of medication identification in an older population using a medication bottle color symbol label system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this pilot study was to evaluate and refine an adjuvant system of color-specific symbols that are added to medication bottles and to assess whether this system would increase the ability of patients 65 years of age or older in matching their medication to the indication for which it was prescribed.</p> <p>Methods</p> <p>This study was conducted in two phases, consisting of three focus groups of patients from a family medicine clinic (n = 25) and a pre-post medication identification test in a second group of patient participants (n = 100). Results of focus group discussions were used to refine the medication label symbols according to themes and messages identified through qualitative triangulation mechanisms and data analysis techniques. A pre-post medication identification test was conducted in the second phase of the study to assess differences between standard labeling alone and the addition of the refined color-specific symbols. The pre-post test examined the impact of the added labels on participants' ability to accurately match their medication to the indication for which it was prescribed when placed in front of participants and then at a distance of two feet.</p> <p>Results</p> <p>Participants appreciated the addition of a visual aid on existing medication labels because it would not be necessary to learn a completely new system of labeling, and generally found the colors and symbols used in the proposed labeling system easy to understand and relevant. Concerns were raised about space constraints on medication bottles, having too much information on the bottle, and having to remember what the colors meant. Symbols and colors were modified if they were found unclear or inappropriate by focus group participants. Pre-post medication identification test results in a second set of participants demonstrated that the addition of the symbol label significantly improved the ability of participants to match their medication to the appropriate medical indication at a distance of two feet (p < 0.001) and approached significant improvement when placed directly in front of participants (p = 0.07).</p> <p>Conclusions</p> <p>The proposed medication symbol label system provides a promising adjunct to national efforts in addressing the issue of medication misuse in the home through the improvement of medication labeling. Further research is necessary to determine the effectiveness of the labeling system in real-world settings.</p
    corecore